Nano-Micro Letters (Oct 2021)
3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption
Abstract
Abstract The 3D hollow hierarchical architectures tend to be designed for inhibiting stack of MXene flakes to obtain satisfactory lightweight, high-efficient and broadband absorbers. Herein, the hollow NiCo compound@MXene networks were prepared by etching the ZIF 67 template and subsequently anchoring the Ti3C2T x nanosheets through electrostatic self-assembly. The electromagnetic parameters and microwave absorption property can be distinctly or slightly regulated by adjusting the filler loading and decoration of Ti3C2T x nanoflakes. Based on the synergistic effects of multi-components and special well-constructed structure, NiCo layered double hydroxides@Ti3C2T x (LDHT-9) absorber remarkably achieves unexpected effective absorption bandwidth (EAB) of 6.72 GHz with a thickness of 2.10 mm, covering the entire Ku-band. After calcination, transition metal oxide@Ti3C2T x (TMOT-21) absorber near the percolation threshold possesses minimum reflection loss (RLmin) value of − 67.22 dB at 1.70 mm within a filler loading of only 5 wt%. This work enlightens a simple strategy for constructing MXene-based composites to achieve high-efficient microwave absorbents with lightweight and tunable EAB.
Keywords