PLoS Computational Biology (Apr 2019)

The relative contribution of color and material in object selection.

  • Ana Radonjić,
  • Nicolas P Cottaris,
  • David H Brainard

DOI
https://doi.org/10.1371/journal.pcbi.1006950
Journal volume & issue
Vol. 15, no. 4
p. e1006950

Abstract

Read online

Object perception is inherently multidimensional: information about color, material, texture and shape all guide how we interact with objects. We developed a paradigm that quantifies how two object properties (color and material) combine in object selection. On each experimental trial, observers viewed three blob-shaped objects-the target and two tests-and selected the test that was more similar to the target. Across trials, the target object was fixed, while the tests varied in color (across 7 levels) and material (also 7 levels, yielding 49 possible stimuli). We used an adaptive trial selection procedure (Quest+) to present, on each trial, the stimulus test pair that is most informative of underlying processes that drive selection. We present a novel computational model that allows us to describe observers' selection data in terms of (1) the underlying perceptual stimulus representation and (2) a color-material weight, which quantifies the relative importance of color vs. material in selection. We document large individual differences in the color-material weight across the 12 observers we tested. Furthermore, our analyses reveal limits on how precisely selection data simultaneously constrain perceptual representations and the color-material weight. These limits should guide future efforts towards understanding the multidimensional nature of object perception.