npj Quantum Materials (Dec 2021)

Giant nonlinear Hall effect in twisted bilayer WTe2

  • Zhihai He,
  • Hongming Weng

DOI
https://doi.org/10.1038/s41535-021-00403-9
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 6

Abstract

Read online

Abstract In a system with broken inversion symmetry, a second-order nonlinear Hall effect can survive even in the presence of time-reversal symmetry. In this work, we show that a giant nonlinear Hall effect can exist in twisted bilayer WTe2 system. The Berry curvature dipole of twisted bilayer WTe2 (θ = 29.4°) can reach up to ~1400 Å, which is much larger than that in previously reported nonlinear Hall systems. In twisted bilayer WTe2 system, there exist abundant band anticrossings and band inversions around the Fermi level, which brings a complicated distribution of Berry curvature, and leads to the nonlinear Hall signals that exhibit dramatically oscillating behavior in this system. Its large amplitude and high tunability indicate that the twisted bilayer WTe2 can be an excellent platform for studying the nonlinear Hall effect.