Communications Materials (Feb 2024)

Complex chemistry of carbon nanotubes toward efficient and stable p-type doping

  • Kaho Kawasaki,
  • Ikuyo Harada,
  • Kouki Akaike,
  • Qingshuo Wei,
  • Yasuko Koshiba,
  • Shohei Horike,
  • Kenji Ishida

DOI
https://doi.org/10.1038/s43246-024-00460-0
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Developing efficient and stable carbon nanotube (CNT) doping techniques and elucidating their chemistry is essential for their further implementation in electronic and energy devices. Here, protonic acids and lithium salts are employed as p-type inducers and stabilizers of the doped state, respectively. Leveraging the electron-withdrawing capability of protons, protonic acids can easily induce heavily p-doped states in CNTs. Anionic species from the acids attach to the positively charged CNTs to achieve charge compensation. Introducing lithium salts with bulky, charge-delocalized anions to the p-doped CNTs results in an anion replacement driven by the free energy gain. The newly formed complexes demonstrate outstanding thermal stability in air, enduring a temperature of 100 °C for over a year. The chemical hardness of the applied anion effectively explains the difference in stability of the doped CNTs, indicating that the doping process and its stabilization can be understood and controlled through complex chemistry.