Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
Luis F. Salas-Nuñez,
Alvaro Barrera-Ocampo,
Paola A. Caicedo,
Natalie Cortes,
Edison H. Osorio,
Maria F. Villegas-Torres,
Andres F. González Barrios
Affiliations
Luis F. Salas-Nuñez
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
Alvaro Barrera-Ocampo
Grupo Natura, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Departamento de Ciencias Farmacéuticas y Químicas, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, Colombia
Paola A. Caicedo
Grupo Natura, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, Colombia
Natalie Cortes
Grupo de Investigación en Química Bioorgánica y Sistemas Moleculares (QBOSMO), Faculty of Natural Sciences and Mathematics, Universidad de Ibagué, Ibagué 730002, Colombia
Edison H. Osorio
Grupo de Investigación en Química Bioorgánica y Sistemas Moleculares (QBOSMO), Faculty of Natural Sciences and Mathematics, Universidad de Ibagué, Ibagué 730002, Colombia
Maria F. Villegas-Torres
Centro de Investigaciones Microbiológicas (CIMIC), Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
Andres F. González Barrios
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
Enzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.