Pharmaceutical Biology (Jan 2020)
Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease
Abstract
Context L-DOPA is the first-line drug for Parkinson’s disease (PD). However, chronic use can lead to dyskinesia. Caffeine, which is a known neuroprotectant, can potentially act as an adjunct to minimise adverse effects of L-DOPA. Objectives This study determined changes in terms of neurodegeneration, locomotion and mechanosensation in Caenorhabditis elegans (Rhabditidae) strain UA57 overexpressing tyrosine hydroxylase (CAT-2) when treated with caffeine, L-DOPA or their combinations. Materials and methods Neurodegeneration was monitored via fluorescence microscopy of GFP-tagged dopaminergic neurons in the head and tail regions of C. elegans. Meanwhile, mechanosensation and locomotion under vehicle (0.1% DMSO), L-DOPA (60 mM), caffeine (10 mM) or 60 mM L-DOPA + 10 or 20 mM caffeine (60LC10 and 60LC20) treatments were scored for 3 days (n = 20). Results L-DOPA (60 mM) reduced CEP and ADE neurons by 4.3% on day 3, with a concomitant decrease in fluorescence by 44.6%. This correlated with reductions in gentle head (−35%) and nose touch (−40%) responses, but improved locomotion (20–75%) compared with vehicle alone. CEP and ADE neuron counts were preserved with caffeine (10 mM) or 60LC10 (98–100%), which correlated with improved mechanosensation (10–23%) and locomotion (18–76%). However, none of the treatments was able to preserve PDE neuron count, reducing the basal slowing response. Discussion and conclusions Taken together, we show that caffeine can protect DAergic neurons and can reduce aberrant locomotion and loss of sensation when co-administered with L-DOPA, which can potentially impact PD treatment and warrants further investigation.
Keywords