BMC Medical Genetics (Feb 2011)

Evaluation of four novel genetic variants affecting hemoglobin A1c levels in a population-based type 2 diabetes cohort (the HUNT2 study)

  • Platou Carl GP,
  • Ræder Helge,
  • Johansson Stefan,
  • Hertel Jens K,
  • Midthjell Kristian,
  • Hveem Kristian,
  • Molven Anders,
  • Njølstad Pål R

DOI
https://doi.org/10.1186/1471-2350-12-20
Journal volume & issue
Vol. 12, no. 1
p. 20

Abstract

Read online

Abstract Background Chronic hyperglycemia confers increased risk for long-term diabetes-associated complications and repeated hemoglobin A1c (HbA1c) measures are a widely used marker for glycemic control in diabetes treatment and follow-up. A recent genome-wide association study revealed four genetic loci, which were associated with HbA1c levels in adults with type 1 diabetes. We aimed to evaluate the effect of these loci on glycemic control in type 2 diabetes. Methods We genotyped 1,486 subjects with type 2 diabetes from a Norwegian population-based cohort (HUNT2) for single-nucleotide polymorphisms (SNPs) located near the BNC2, SORCS1, GSC and WDR72 loci. Through regression models, we examined their effects on HbA1c and non-fasting glucose levels individually and in a combined genetic score model. Results No significant associations with HbA1c or glucose levels were found for the SORCS1, BNC2, GSC or WDR72 variants (all P-values > 0.05). Although the observed effects were non-significant and of much smaller magnitude than previously reported in type 1 diabetes, the SORCS1 risk variant showed a direction consistent with increased HbA1c and glucose levels, with an observed effect of 0.11% (P = 0.13) and 0.13 mmol/l (P = 0.43) increase per risk allele for HbA1c and glucose, respectively. In contrast, the WDR72 risk variant showed a borderline association with reduced HbA1c levels (β = -0.21, P = 0.06), and direction consistent with decreased glucose levels (β = -0.29, P = 0.29). The allele count model gave no evidence for a relationship between increasing number of risk alleles and increasing HbA1c levels (β = 0.04, P = 0.38). Conclusions The four recently reported SNPs affecting glycemic control in type 1 diabetes had no apparent effect on HbA1c in type 2 diabetes individually or by using a combined genetic score model. However, for the SORCS1 SNP, our findings do not rule out a possible relationship with HbA1c levels. Hence, further studies in other populations are needed to elucidate whether these novel sequence variants, especially rs1358030 near the SORCS1 locus, affect glycemic control in type 2 diabetes.