Energies (Oct 2022)

Liquefied Natural Gas Cold Energy Utilization for Land-Based Cold Water Fish Aquaculture in South Korea

  • Seungyeop Baek,
  • Wontak Choi,
  • Gyuchang Kim,
  • Jaedeok Seo,
  • Sanggon Lee,
  • Hyomin Jeong,
  • Yonmo Sung

DOI
https://doi.org/10.3390/en15197322
Journal volume & issue
Vol. 15, no. 19
p. 7322

Abstract

Read online

A new concept of land-based Atlantic salmon farming utilizing liquefied natural gas (LNG) cold energy is proposed. In this study, laboratory-scale experiments were conducted using liquid nitrogen as a cold energy source to confirm whether the water temperature of a fish farming tank can reach below 17 °C within an hour. In particular, the effects of the mass flow rates of liquid nitrogen (0.0075, 0.01, and 0.0125 kg/s) and water (0.05, 0.1, and 0.15 kg/s) on the cooling performances of water were investigated. The results showed that a higher mass flow rate of liquid nitrogen results in a better water cooling performance. In the case of varying the mass flow rate of liquid nitrogen, it was observed that the mass flow rate of 0.0125 kg/s showed the greatest water temperature difference of 9.10 °C/h, followed by that of 0.01 kg/s (5.88 °C/h), and 0.0075 kg/s (5.06 °C/h). In the case of varying the mass flow rate of water, it was observed that the mass flow rate of 0.05 kg/s showed the most significant water temperature difference of 7.92 °C/h, followed by that of 0.1 kg/s (6.26 °C/h), and 0.15 kg/s (5.53 °C/h). Based on the experimental results of this study and the water cooling heat source by an LNG mass flow rate of 220.5 kg/s, the estimated production capacity of Atlantic salmon was approximately 14,000 tons, which is 36.8% of that of imported salmon in South Korea.

Keywords