Information (May 2024)
Cost-Effective Signcryption for Securing IoT: A Novel Signcryption Algorithm Based on Hyperelliptic Curves
Abstract
Security and efficiency remain a serious concern for Internet of Things (IoT) environments due to the resource-constrained nature and wireless communication. Traditional schemes are based on the main mathematical operations, including pairing, pairing-based scalar multiplication, bilinear pairing, exponential operations, elliptic curve scalar multiplication, and point multiplication operations. These traditional operands are cost-intensive and require high computing power and bandwidth overload, thus affecting efficiency. Due to the cost-intensive nature and high resource requirements, traditional approaches are not feasible and are unsuitable for resource-limited IoT devices. Furthermore, the lack of essential security attributes in traditional schemes, such as unforgeability, public verifiability, non-repudiation, forward secrecy, and resistance to denial-of-service attacks, puts data security at high risk. To overcome these challenges, we have introduced a novel signcryption algorithm based on hyperelliptic curve divisor multiplication, which is much faster than other traditional mathematical operations. Hence, the proposed methodology is based on a hyperelliptic curve, due to which it has enhanced security with smaller key sizes that reduce computational complexity by 38.16% and communication complexity by 62.5%, providing a well-balanced solution by utilizing few resources while meeting the security and efficiency requirements of resource-constrained devices. The proposed strategy also involves formal security validation, which provides confidence for the proposed methodology in practical implementations.
Keywords