Journal of Lipid Research (Jul 1997)

Characterization of a specific polyclonal antibody against 13-hydroperoxyoctadecadienoic acid-modified protein: formation of lipid hydroperoxide-modified apoB-100 in oxidized LDL

  • Y Kato,
  • Y Makino,
  • T Osawa

Journal volume & issue
Vol. 38, no. 7
pp. 1334 – 1346

Abstract

Read online

Lipid hydroperoxide may react with protein or amino phospholipid without secondary decomposition. We prepared a polyclonal antibody to lipid hydroperoxide-modified proteins using 13S-hydroperoxy-9Z, 11E-octadecadienoic acid-modified keyhole limpet hemocyanin (13-HPODE-KLH) as immunogen. The antibody recognized 13-HPODE-modified bovine serum albumin (BSA), but not aldehyde-modified proteins, such as malondialdehyde-modified BSA. The antibody also recognized adducts derived from 13-HPODE and 13S-hydroperoxy-9Z, 11E, 15Z-octadecatrienoic acid (13-HPOTRE(alpha)). The oxidized alpha-linolenic acid- and linoleate-protein adducts were recognized by the antibody. Oxidized phospholipid-protein adducts were scarcely recognized by the antibody. However, when ester bonds of phospholipids containing linoleic acid were hydrolyzed by alkaline treatment, the cross-reactivities appeared. The result suggests that a phospholipid hydroperoxide can react with a protein directly or indirectly, and a carboxyl terminal (COOH) of the lipid in an adduct was needed as an epitope. Oxidized LDL (ox-LDL) was prepared by the incubation of LDL with copper ion or 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), and the formation of lipid hydroperoxide-modified apolipoprotein was confirmed using the antibody. A slight immunoreactivity was observed in ox-LDL without alkaline treatment. When the ox-LDL was treated with alkali to hydrolyze the ester bonds of the lipid, enhanced antigenicity appeared with time-dependency. The results suggest that lipid hydroperoxide-modified apolipoprotein was formed during the oxidation of LDL.