The Clinical Respiratory Journal (May 2024)
Quantitative analysis of lung lesions using unenhanced chest computed tomography images
Abstract
Abstract Introduction Chest radiograph and computed tomography (CT) scans can accidentally reveal pulmonary nodules. Malignant and benign pulmonary nodules can be difficult to distinguish without specific imaging features, such as calcification, necrosis, and contrast enhancement. However, these lesions may exhibit different image texture characteristics which cannot be assessed visually. Thus, a computer‐assisted quantitative method like histogram analysis (HA) of Hounsfield unit (HU) values can improve diagnostic accuracy, reducing the need for invasive biopsy. Methods In this exploratory control study, nonenhanced chest CT images of 20 patients with benign (10) and cancerous (10) lesion were selected retrospectively. The appearances of benign and malignant lesions were very similar in chest CT images, and only pathology report was used to discriminate them. Free hand region of interest (ROI) was inserted inside the lesion for all slices of each lesion. Mean, minimum, maximum, and standard deviations of HU values were recorded and used to make HA. Results HA showed that the most malignant lesions have a mean HU value between 30 and 50, a maximum HU less than 150, and a minimum HU between −30 and 20. Lesions outside these ranges were mostly benign. Conclusion Quantitative CT analysis may differentiate malignant from benign lesions without specific malignancy patterns on unenhanced chest CT image.
Keywords