PLoS Neglected Tropical Diseases (Mar 2019)

Voltage-gated sodium channel intron polymorphism and four mutations comprise six haplotypes in an Aedes aegypti population in Taiwan.

  • Han-Hsuan Chung,
  • I-Cheng Cheng,
  • Yen-Chi Chen,
  • Cheo Lin,
  • Takashi Tomita,
  • Hwa-Jen Teng

DOI
https://doi.org/10.1371/journal.pntd.0007291
Journal volume & issue
Vol. 13, no. 3
p. e0007291

Abstract

Read online

BACKGROUND:Knockdown resistance (kdr) to dichlorodiphenyltrichloroethane (DDT) and pyrethroids is known to link amino acid substitutions in the voltage-gated sodium channel (VGSC) in Aedes aegypti. Dengue fever primarily transmitted by Ae. aegypti is an annual public health issue in Taiwan. Accordingly, pyrethroid insecticides have been heavily used for decades to control mosquito populations in the summer and autumn. In Taiwan, an Ae. aegypti population with two VGSC mutations, V1016G and D1763Y, was described previously. METHODOLOGY/PRINCIPAL FINDING:Aedes aegypti (G0) were collected in Tainan and Kaohsiung in southern Taiwan. The VGSC gene polymorphisms of the kdr mutations and the intron flanked by exons 20 and 21 were verified. The first generation offspring (G1) were used to measure the resistance level to cypermethrin, a pyrethroid insecticide currently used in Taiwan. In addition to V1016G and D1763Y, we describe two new mutations, S989P and F1534C, which have not been reported in Taiwan. Moreover, we also identify two types (groups A and B) of introns between exons 20 and 21. Intriguingly, the kdr mutations S989P, V1016G and D1763Y are strictly located on the haplotype harboring the group A intron, whereas F1534C links to the group B intron. When those data were taken together, we proposed the following six haplotypes for VGSC genes in Taiwan today: (i)S989-intron A-V1016-F1534-D1763, (ii)S989-intron A-V1016G-F1534-D1763, (iii)S989P-intron A-V1016G-F1534-D1763, (iv)S989-intron A-V1016G-F1534-D1763Y, (v)S989-intron B-V1016-F1534-D1763 and (vi)S989-intron B-V1016-F1534C-D1763. Triple heterozygous mutations of either S989P/V1016G/F1534C or V1016G/F1534C/D1763Y can be found in one single Ae. aegypti mosquito. The proportions of the VGSC mutations were relevant to cypermethrin resistance. Notably, the presence of S989P and V1016G in the population could be a helpful reference to predict the resistance level to cypermethrin. This is the first study to demonstrate the coexistence of four kdr mutations in a population of Ae. aegypti. CONCLUSIONS/SIGNIFICANCE:Four kdr mutations (S989P, V1016G, F1534C and D1763Y) and two intron forms (Group A and B) were commonly found in local Ae. aegypti populations in Taiwan.