NeuroImage (Jul 2021)
EEG cross-frequency phase synchronization as an index of memory matching in visual search
Abstract
Visual perception is influenced by our expectancies about incoming sensory information. It is assumed that mental templates of expected sensory input are created and compared to actual input, which can be matching or not. When such mental templates are held in working memory, cross-frequency phase synchronization (CFS) between theta and gamma band activity has been proposed to serve matching processes between prediction and sensation. We investigated how this is affected by the number of activated templates that could be matched by comparing conditions where participants had to keep either one or multiple templates in mind for successful visual search. We found a transient CFS between EEG theta and gamma activity in an early time window around 150 ms after search display presentation, in right hemispheric parietal cortex. Our results suggest that for single template conditions, stronger transient theta-gamma CFS at posterior sites contralateral to target presentation can be observed than for multiple templates. This can be interpreted as evidence to the idea of sequential attentional templates. But mainly, it is understood in line with previous theoretical accounts strongly arguing for transient synchronization between posterior theta and gamma phase as a neural correlate of matching incoming sensory information with contents from working memory and as evidence for limitations in memory matching during multiple template search.