Anais da Academia Brasileira de Ciências (Dec 2012)

On groups of formal diffeomorphisms of several complex variables

  • Mitchael Martelo,
  • Bruno Scárdua

DOI
https://doi.org/10.1590/S0001-37652012000400002
Journal volume & issue
Vol. 84, no. 4
pp. 873 – 880

Abstract

Read online

In this note we announce some results in the study of groups of formal or germs of analytic diffeomorphisms in several complex variables. Such groups are related to the study of the transverse structure and dynamics of Holomorphic foliations, via the holonomy group notion of a foliation's leaf. For dimension one, there is a well-established dictionary relating analytic/formal classification of the group, with its algebraic properties (finiteness, commutativity, solvability, among others). Such system of equivalences also characterizes the existence of suitable integrating factors, i.e., invariant vector fields and one-forms associated to the group. Our aim is to state the basic lines of such dictionary for the case of several complex variables groups. Our results are applicable in the construction of suitable integrating factors for holomorphic foliations with singularities. We believe they are a starting point in the study of the connection between Liouvillian integration and transverse structures of holomorphic foliations with singularities in the case of arbitrary codimension. The results in this note are derived from the PhD thesis "Grupos de germes de difeomorfismos complexos em várias variáveis e formas diferenciais" of the first named author (Martelo 2010).Nesta nota anunciamos alguns resultados no estudo de grupos de difeomorfismos formais e germes de difeomorfismos em várias variáveis complexas. Tais grupos estão relacionados com o estudo de estruturas transversais e a dinâmica das folheações holomorfas, através da noção de grupo de holonomia da folha de uma folheação. Para dimensão um, há um amplo dicionário relacionando classificação analítica/formal do grupo, com suas propriedades algébricas (finitude, comutatividade, solubilidade, dentre outras). Tal sistema de equivalências também caracteriza a existência de certos fatores de integração, ou seja, campos de vetores e one-forms diferenciais invariantes associados ao grupo. Nosso objetivo é estabelecer as linhas básicas de um tal dicionário para o caso de grupos em várias variáveis complexas. Nossos resultados podem ser aplicados na construção de certos fatores de integração para folheações holomofas singulares. Acreditamos que estes podem representar um ponto de partida no estudo da conexão entre Integração Liouvilliana e estruturas transversais de folheações holomorfas singulares no caso de codimensão arbitrária. Os resultados nesta comunicação são derivados da tese de Doutorado "Grupos de germes de difeomorfismos complexos em várias variáveis e formas diferenciais" do primeiro autor (Martelo 2010).

Keywords