Наукові горизонти (Nov 2021)

Experimental Studies of Structural and Technological Parameters of a Downdraft Gasifier Based on Plant Biomass

  • Mykola Tregub,
  • Anna Holubenko,
  • Nataliya Tsyvenkova

DOI
https://doi.org/10.48077/scihor.24(6).2021.9-23
Journal volume & issue
Vol. 24, no. 6
pp. 9 – 23

Abstract

Read online

The relevance of the study is conditioned upon the need to develop and implement structural and technological solutions to improve the efficiency of the chemical and thermal conversion of biomass into combustible gas. Within the framework of the above, the authors of this paper have designed a downdraft gasifier running on plant biomass. The presented research links the heat quantity received from the utilisation of syngas produced during the gasifier operation cycle with the parameters of the gas blow regime and the physico-chemical properties of biomass. For an in-depth study of the influence of the gas blow regime on the yield and calorific value of syngas produced from biomass, the authors introduce the concept of the blow coverage quality coefficient. This coefficient describes the quality of the cross-section coverage of the gasification chamber neck with gas currents of the tuyere zone. The purpose of this study is to establish the influence of the blow coverage quality coefficient, the volume of blow gases and the void ratio of the bulk biomass layer on the heat quantity received from syngas produced during the gasifier operation cycle. A multi-factor experiment was planned and performed, which relates the dependent factor to variables, and the corresponding response surfaces were constructed. The research findings are that the maximum value of the heat quantity received from the utilisation of syngas produced during the one-hour gasifier operation cycle was 519 MJ. This value is achieved with 0.8 blow coverage quality coefficient and a blow gas volume of 47.4 m3/h and 46.75% void ratio of the bulk biomass layer. The measurement results are highly consistent with the calculated data. The coefficient of determination was R2=0.983. The practical value of this study is to substantiate the rational design and technological parameters of the downdraft biomass gasifier operation, which will increase the efficiency of biomass energy production. The findings presented in this study can be used both to design new gasifiers and to improve the efficiency of the available ones

Keywords