Wind (Dec 2022)

Pre-Charge Pressure Estimation of a Hydraulic Accumulator Using Surface Temperature Measurements

  • Magnus F. Asmussen,
  • Jesper Liniger,
  • Nariman Sepehri,
  • Henrik C. Pedersen

DOI
https://doi.org/10.3390/wind2040041
Journal volume & issue
Vol. 2, no. 4
pp. 784 – 800

Abstract

Read online

Pitch systems form an essential part of today’s wind turbines; they are used for power regulation and serve as part of a turbine’s safety system. Hydraulic pitch systems include hydraulic accumulators, which comprise a crucial part of the safety system, as they are used to store energy for emergency shutdowns. However, accumulators may be subject to gas leakage, which is the primary failure mode. Gas leakage affects the performance of the accumulator and, in extreme cases, compromises the safety function of the pitch system. This paper deals with the development and experimental validation of an algorithm to detect gas leakage in piston-type accumulators. The innovation of the algorithm is the ability to generate estimates of the remaining amount of gas while solving the drift problem evidenced in previous research. Additionally, this method enables the ability to isolate gas leakage to a single accumulator out of a bank of accumulators. The approach is based on a State Augmented Extended Kalman Filter (SAEKF), which utilizes an extended thermal model of the accumulator, as well as temperature measurements along the accumulator surface to estimate the remaining gas in the accumulator. The method is experimentally validated and addresses the drift problem in estimating the gas leakage evidenced from previous research. Additionally, the method can identify and isolate gas leakage to a single accumulator from a bank of accumulators.

Keywords