PLoS ONE (Jan 2017)

Individual Plasticity of the Shade Response of the Invasive Solidago canadensis in China.

  • Leshan Du,
  • Haiyan Liu,
  • Ming Yan,
  • Junmin Li,
  • Junsheng Li

DOI
https://doi.org/10.1371/journal.pone.0170049
Journal volume & issue
Vol. 12, no. 1
p. e0170049

Abstract

Read online

To evaluate the population variation, individual plasticity, and local adaptability of Solidago canadensis in response to shade treatment, we conducted a common pots experiment with a total of 150 ramets (5 genets, 15 populations, and 2 treatments) subjected to both control (natural light) and shady treatment (10% of natural light). Shade treatment significantly reduced growth and content of defense metabolites in S. canadensis. Compared to control, shading led to increased height, decreased basal diameter, increased leaf width, increased leaf length, increased chlorophyll content, stronger photosynthetic rate (Pn), stronger stomatal conductance (gs), and lower root to shoot ratio. Three-way analysis of variance revealed geographical origin to significantly affect the basal diameter of S. canadensis, while genotype significantly affected plant height, intercelluar CO2 concentration (Ci), transpiration rate (Tr), and proline content. Significant interactive effects between shade and geographic origin were prevalent for most traits. The phenotypic differentiation coefficient of the plasticity of all traits was below 0.4, indicating that most of all variations can be found among individuals within populations. Phenotypic selection analysis revealed that fitness was significantly positively related to plant height, basal diameter, Ci, total flavonoid content, as well as the plasticity of plant height, leaf length, leaf width, gs, Ci, total flavonoid content, and malondialdehyde content under the control condition. However, subjected to shade, fitness was only significantly positively related to plant height, basal diameter, and the plasticity of basal diameter. Rather than local adaption, these results suggest that individual plasticity played a more prominent role in the shade response of the invasive S. canadensis.