Radio Physics and Radio Astronomy (Sep 2020)

CORRELATION BETWEEN AIR TEMPERATURE AND THUNDERSTORM ACTIVITY IN SOUTH AMERICA ACCORDING TO THE ELF MEASUREMENTS IN ANTARCTICA

  • A. V. Paznukhov,
  • Y. M. Yampolski,
  • A. V. Koloskov

DOI
https://doi.org/10.15407/rpra25.03.211
Journal volume & issue
Vol. 25, no. 3
pp. 211 – 217

Abstract

Read online

Purpose: Analysis of the air temperature annual variations over different South American regions by long series of long-term meteorological observations, consideration of the physico-geographical and climatic features of the Amazonian lowlands, which affect thunderstorm activity in this region, search for the connection between seasonal variations in the Earth-ionosphere global resonator characteristics and air temperature in America, comparison of the results obtained in Antarctica with the surface temperature of American continent, checking the point source model validity for explaining the positions of the thunderstorm activity largest areas. Design/methodology/approach: The method of correlation analysis of time series was used. According to the long-term monitoring of the natural noise of the extremely low frequency range at the Ukrainian Antarctic Akademik Vernadsky Station, the seasonal changes in the Schumann resonance first mode level determined by the activity of the American thunderstorm center were retrieved. The average air temperature in the Amazonian lowlands was estimated for the same period according to the global network of meteorological stations Findings: The presence of a strong relationship between the surface air temperature of the equatorial and sub-equatorial regions of South America and the intensity of the Schumann resonance signal generated by the American thunderstorm center is shown. The hypothesis is confirmed that the Schumann resonator can play the role of a “global thermometer” and the model of an effective point source adequately describes the continental temperature changes. Conclusions: The developed technique is applicable for different points of Schumann resonance monitoring for studying all continental thunderstorm centers. This approach will be useful for developing the concept of using the Schumann resonator as a “global thermometer”. Using the data of simultaneous observations in several monitoring points can be considered promising for estimating short-term (days – several days) variations in global temperature.

Keywords