Cells (May 2020)

Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain

  • Tuoxin Cao,
  • Jessica J. Matyas,
  • Cynthia L. Renn,
  • Alan I. Faden,
  • Susan G. Dorsey,
  • Junfang Wu

DOI
https://doi.org/10.3390/cells9051194
Journal volume & issue
Vol. 9, no. 5
p. 1194

Abstract

Read online

Brain-derived neurotrophic factor (BDNF), a major focus for regenerative therapeutics, has been lauded for its pro-survival characteristics and involvement in both development and recovery of function within the central nervous system (CNS). However, studies of tyrosine receptor kinase B (TrkB), a major receptor for BDNF, indicate that certain effects of the TrkB receptor in response to disease or injury may be maladaptive. More specifically, imbalance among TrkB receptor isoforms appears to contribute to aberrant signaling and hyperpathic pain. A truncated isoform of the receptor, TrkB.T1, lacks the intracellular kinase domain of the full length receptor and is up-regulated in multiple CNS injury models. Such up-regulation is associated with hyperpathic pain, and TrkB.T1 inhibition reduces neuropathic pain in various experimental paradigms. Deletion of TrkB.T1 also limits astrocyte changes in vitro, including proliferation, migration, and activation. Mechanistically, TrkB.T1 is believed to act through release of intracellular calcium in astrocytes, as well as through interactions with neurotrophins, leading to cell cycle activation. Together, these studies support a potential role for astrocytic TrkB.T1 in hyperpathic pain and suggest that targeted strategies directed at this receptor may have therapeutic potential.

Keywords