Applied Sciences (Jun 2021)
Subcooled Flow Boiling Heat Flux Enhancement Using High Porosity Sintered Fiber
Abstract
Passive methods to increase the heat flux on the subcooled flow boiling are extremely needed on modern cooling systems. Many methods, including treated surfaces and extended surfaces, have been investigated. Experimental research to enhance the subcooled flow boiling using high sintered fiber attached to the surface was conducted. One bare surface (0 mm) and four porous thickness (0.2, 0.5, 1.0, 2.0 mm) were compared under three different mass fluxes (200, 400, and 600 kg·m−2·s−1) and three different inlet subcooling temperature (70, 50, 30). Deionized water under atmospheric pressure was used as the working fluid. The results confirmed that the porous body can enhance the heat flux and reduce the wall superheat temperature. However, higher porous thickness presented a reduction in the heat flux in comparison with the bare surface. Bubble formation and pattern flow were recorded using a high-speed camera. The bubble size and formation are generally smaller at higher inlet subcooling temperatures. The enhancement in the heat flux and the reduction on the wall superheat is attributed to the increment on the nucleation sites, the increment on the heating surface area, water supply ability through the porous body, and the vapor trap ability.
Keywords