Oxygen (Mar 2023)
Effects of Acute Red Spinach Extract Ingestion on Repeated Sprint Performance in Division I NCAA Female Soccer Athletes
Abstract
Red spinach extract is high in inorganic nitrate/nitrite (NO3/NO2) which has been shown to enhance vascular function, cognition, and physical performance. To date, there have been no investigations as to whether red spinach extract serves as an effective strategy to improve repeated exercise performance, which is applicable to many sports and activities. The purpose of this study was to investigate the effect of acute red spinach extract ingestion on repeated sprint ability in female athletes. Eleven Division I NCAA female athletes (ages 18–24) were recruited. In a double-blinded, randomized, counterbalanced design, participants completed two separate visits each with a different treatment: placebo (placebo; tomato juice) or red spinach extract (~400 mg nitrate). For each trial, participants consumed their respective treatment two hours before exercise. Following a warm-up, participants completed 3 × 15 s Wingate Anaerobic Tests (WAnTs) separated by 2 min of recovery. A capillary blood sample was obtained pre-exercise to measure NO2 concentrations. Performance outcomes, heart rate (heart rate), and rate of perceived exertion were measured following each WAnT. Blood lactate (La-) was obtained prior to exercise (PRE) and after the completion of the repeated sprints (POST). Each visit was separated by a minimal recovery period of 72 h. Mean power (p = 0.204), peak power (p = 0.067), heart rate (p = 0.151), and rate of perceived exertion (p = 0.379) were not significantly different between treatments. POST La- concentration was significantly higher with red spinach extract when compared to the placebo (p = 0.030). Furthermore, the fatigue index (p = 0.018) was significantly lower with red spinach extract. The results do not support the use of red spinach extract for the enhancement of power output during repeated anaerobic exercise. However, it may result in improved La-/H+ removal from the muscle, thereby combating physical fatigue.
Keywords