Scientific Reports (May 2023)

Rab27a-mediated extracellular vesicle secretion contributes to osteogenesis in periodontal ligament-bone niche communication

  • Yun Lu,
  • Liru Zhao,
  • Jiaqi Mao,
  • Wen Liu,
  • Wensheng Ma,
  • Bingjiao Zhao

DOI
https://doi.org/10.1038/s41598-023-35172-x
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Periodontitis, an infectious and common disease worldwide, leads to the destruction of the periodontal ligament-alveolar bone complex. Within the bone metabolic niche, communication between periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs) has been considered a major contributor to osteogenesis. PDLSC-derived extracellular vesicles (P-EVs) have shown great potential for bone regeneration. However, the secretion and uptake mechanisms of P-EVs remain elusive. Herein, the biogenesis of extracellular vesicles (EVs) from PDLSCs was observed using scanning and transmission electron microscopy. PDLSCs were transduced with Ras-associated protein 27a (Rab27a) siRNA (PDLSC siRab27a ) to inhibit EV secretion. The effect of P-EVs on BMMSCs was evaluated using a non-contact transwell co-culture system. We observed that Rab27a knockdown decreased EV secretion, and PDLSC siRab27a remarkably attenuated co-culture-enhanced osteogenesis of BMMSCs. Isolated PDLSC-derived EVs enhanced osteogenic differentiation of BMMSCs in vitro and induced bone regeneration in a calvarial defect model in vivo. PDLSC-derived EVs were rapidly endocytosed by BMMSCs via the lipid raft/cholesterol endocytosis pathway and triggered the phosphorylation of extracellular signal-regulated kinase 1/2. In conclusion, PDLSCs contribute to the osteogenesis of BMMSCs through Rab27a-mediated EV secretion, thereby providing a potential cell-free approach for bone regeneration.