Journal of Medical Ultrasound (Jun 2014)
High-intensity Focused Ultrasound Ablation of Soft-tissue Tumors and Assessment of Treatment Response with Multiparametric Magnetic Resonance Imaging: Preliminary Study Using Rabbit VX2 Tumor Model
Abstract
High-intensity focused ultrasound (HIFU) is an emerging technique for noninvasive ablative treatment. However, HIFU has rarely been performed for the treatment of soft-tissue tumors. Thus, we aimed to assess the feasibility and safety of performing extracorporeal HIFU for the treatment of soft-tissue tumor. The treatment response was assessed using functional magnetic resonance imaging (MRI) techniques. Materials and methods: In the rabbit VX2 intramuscular tumor model, HIFU was performed using an extracorporeal HIFU device (YDME FEP-BY02) by varying the electric power from 50 to 400 W, with the other parameters being fixed. The HIFU beam was insonated to one layer of focal spots having a depth of 8 mm. The degree of ablation was evaluated by histological examination and functional MRI techniques including dynamic contrast-enhanced MRI (DCE-MRI) and apparent diffusion coefficient (ADC) map. The presence of skin burn was also evaluated. Results: Applying HIFU with an electric power of 200 W discretely produced the ablation zone without skin burn as planned before treatment (maximal depth: 8–9 mm), which shows the suitability of using HIFU (with 200 W electric power) for the treatment of soft-tissue tumors. By contrast, HIFU with an electric power of 100 W produced an ill-marginated ablation zone with internal residual tumor foci, and HIFU with 300–400 W produced ablation zones with a maximum depth of 13–24 mm, which far exceeded the planned depth and caused skin burn. Perfusion maps of DCE-MRI demonstrated the devascularized ablation zone more conspicuously than conventional contrast-enhanced T1-weighted images, and ADC map demonstrated the surrounding edema or granulation tissue better than conventional T2-weighted images. Conclusion: Extracorporeal HIFU treatment for soft-tissue tumor may be a feasible approach with adjustment of input energy level. For post-treatment assessment, functional MRI techniques including DCE-MRI and ADC map may be useful and complementary to conventional MRI.
Keywords