Nonautonomous Dynamical Systems (Jun 2022)

Existence of solutions for unilateral problems associated to some quasilinear anisotropic elliptic equations with measure data

  • Al-Hawmi Mohammed,
  • Hjiaj Hassane

DOI
https://doi.org/10.1515/msds-2022-0147
Journal volume & issue
Vol. 9, no. 1
pp. 68 – 90

Abstract

Read online

In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type {Au+g(x,u,∇u)=μ−div φ(u)in Ω,u=0on ∂Ω,\left\{ {\matrix{{Au + g\left( {x,u,\nabla u} \right) = \mu - div\,\phi \left( u \right)} \hfill & {in\,\Omega ,} \hfill \cr {u = 0} \hfill & {on\,\,\partial \Omega ,} \hfill \cr } } \right. where Au=−∑i=1N∂∂xiai(x,u,∇u)Au = - \sum\limits_{i = 1}^N {{\partial \over {\partial {x_i}}}{a_i}\left( {x,u,\nabla u} \right)} is a Leray-Lions operator, the Carathéodory function g(x, s, ξ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data µ = f − div F belongs to L1−dual and ϕ (·) ∈ C0(R, RN).

Keywords