Identification of a novel DNA oxidative damage repair pathway, requiring the ubiquitination of the histone variant macroH2A1.1
Khalid Ouararhni,
Flore Mietton,
Jamal S. M. Sabir,
Abdulkhaleg Ibrahim,
Annie Molla,
Raed S. Albheyri,
Ali T. Zari,
Ahmed Bahieldin,
Hervé Menoni,
Christian Bronner,
Stefan Dimitrov,
Ali Hamiche
Affiliations
Khalid Ouararhni
Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer
Flore Mietton
Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes
Jamal S. M. Sabir
Centre of Excellence in Bionanoscience Research, King Abdulaziz University
Abdulkhaleg Ibrahim
Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer
Annie Molla
Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes
Raed S. Albheyri
Centre of Excellence in Bionanoscience Research, King Abdulaziz University
Ali T. Zari
Centre of Excellence in Bionanoscience Research, King Abdulaziz University
Ahmed Bahieldin
Centre of Excellence in Bionanoscience Research, King Abdulaziz University
Hervé Menoni
Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes
Christian Bronner
Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer
Stefan Dimitrov
Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes
Ali Hamiche
Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer
Abstract Background The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. Results Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. Conclusions Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.