Foods (Jun 2024)

The Potential of Using Bisr Date Powder as a Novel Ingredient in Biscuits Made of Wheat Flour Only or Mixed with Barley

  • Haiam O. Elkatry,
  • Sukainah E. H. Almubarak,
  • Heba I. Mohamed,
  • Khaled M. A. Ramadan,
  • Abdelrahman R. Ahmed

DOI
https://doi.org/10.3390/foods13121940
Journal volume & issue
Vol. 13, no. 12
p. 1940

Abstract

Read online

An overproducing date fruit with limited industrial utilization leads to significant waste and losses, especially in the early stage of date maturity known as bisr. This study aimed to investigate the potential use of bisr date powder (BDP) at different concentrations (25%, 50%, and 100%) as a natural sweetener instead of sugar and barley flour as a source of dietary fiber, vitamins, and minerals instead of wheat flour (50%) in biscuit production over storage periods of 7, 14, and 21 days. The analysis revealed that the bisr Al-Khalas powder sample had a moisture content of 11.84%, ash content of 2.30%, and crude fiber content of 10.20%. Additionally, it had a low protein (2.50%) and fat (0.77%) content, with total carbohydrates at 82.59%. The gradual substitution of bisr Al-Khalas in biscuit production resulted in an increased moisture, ash, fat, protein, crude fiber, and iron content, as well as a decrease in total carbohydrate percentage. A chemical analysis of bisr Al-Khalas powder demonstrated high levels of antioxidants, with 248.49 mg gallic acid/g of phenolic compounds, 31.03 mg quercetin/g of flavonoids, and an antioxidant activity ranging from 42.30%, as shown by the DPPH test. The peroxide content was 0.009 mg equivalent/kg. Biscuit samples with different proportions of bisr Al-Khalas showed an improved resistance to oxidation compared to samples without bisr Al-Khalas, with increased resistance as the percentage of replacement increased during storage. Physical properties such as the diameter, height, and spread percentage, as well as organoleptic properties like color, flavor, aroma, and taste, were significantly enhanced with higher levels of bisr Al-Khalas in the mixture. Biscuit samples fortified with 100% pure bisr Al-Khalas powder were found to be less acceptable, while samples with a 25% substitution did not negatively impact sensory properties. In addition, acrylamide and hydroxymethylfurfural (HMF) were not detected in bisr powder and biscuit samples prepared at different concentrations (25%, 50%, and 100%). In conclusion, the study suggests that bisr Al-Khalas powder, an underutilized waste product, has the potential to add value to commercial biscuit production due to its high nutritional value and extended storage period resulting from its potent antioxidant activity.

Keywords