Genes (Sep 2021)

A Novel Splicing Variant of <i>COL2A1</i> in a Fetus with Achondrogenesis Type II: Interpretation of Pathogenicity of In-Frame Deletions

  • Valentina Bruni,
  • Cristina Barbara Spoleti,
  • Andrea La Barbera,
  • Vincenzo Dattilo,
  • Emma Colao,
  • Carmela Votino,
  • Emanuele Bellacchio,
  • Nicola Perrotti,
  • Sabrina Giglio,
  • Rodolfo Iuliano

DOI
https://doi.org/10.3390/genes12091395
Journal volume & issue
Vol. 12, no. 9
p. 1395

Abstract

Read online

Achondrogenesis type II (ACG2) is a lethal skeletal dysplasia caused by dominant pathogenic variants in COL2A1. Most of the variants found in patients with ACG2 affect the glycine residue included in the Gly-X-Y tripeptide repeat that characterizes the type II collagen helix. In this study, we reported a case of a novel splicing variant of COL2A1 in a fetus with ACG2. An NGS analysis of fetal DNA revealed a heterozygous variant c.1267-2_1269del located in intron 20/exon 21. The variant occurred de novo since it was not detected in DNA from the blood samples of parents. We generated an appropriate minigene construct to study the effect of the variant detected. The minigene expression resulted in the synthesis of a COL2A1 messenger RNA lacking exon 21, which generated a predicted in-frame deleted protein. Usually, in-frame deletion variants of COL2A1 cause a phenotype such as Kniest dysplasia, which is milder than ACG2. Therefore, we propose that the size and position of an in-frame deletion in COL2A1 may be relevant in determining the phenotype of skeletal dysplasia.

Keywords