Journal of Medical Internet Research (Jul 2023)

Predictors of COVID-19 From a Statewide Digital Symptom and Risk Assessment Tool: Cross-Sectional Study

  • Benjamin L Schooley,
  • Abdulaziz Ahmed,
  • Justine Maxwell,
  • Sue S Feldman

DOI
https://doi.org/10.2196/46026
Journal volume & issue
Vol. 25
p. e46026

Abstract

Read online

BackgroundSome of the most vexing issues with the COVID-19 pandemic were the inability of facilities and events, such as schools and work areas, to track symptoms to mitigate the spread of the disease. To combat these challenges, many turned to the implementation of technology. Technology solutions to mitigate repercussions of the COVID-19 pandemic include tools that provide guidelines and interfaces to influence behavior, reduce exposure to the disease, and enable policy-driven avenues to return to a sense of normalcy. This paper presents the implementation and early evaluation of a return-to-work COVID-19 symptom and risk assessment tool. The system was implemented across 34 institutions of health and education in Alabama, including more than 174,000 users with over 4 million total uses and more than 86,000 reports of exposure risk between July 2020 and April 2021. ObjectiveThis study aimed to explore the usage of technology, specifically a COVID-19 symptom and risk assessment tool, to mitigate exposure to COVID-19 within public spaces. More specifically, the objective was to assess the relationship between user-reported symptoms and exposure via a mobile health app, with confirmed COVID-19 cases reported by the Alabama Department of Public Health (ADPH). MethodsThis cross-sectional study evaluated the relationship between confirmed COVID-19 cases and user-reported COVID-19 symptoms and exposure reported through the Healthcheck web-based mobile application. A dependent variable for confirmed COVID-19 cases in Alabama was obtained from ADPH. Independent variables (ie, health symptoms and exposure) were collected through Healthcheck survey data and included measures assessing COVID-19–related risk levels and symptoms. Multiple linear regression was used to examine the relationship between ADPH-confirmed diagnosis of COVID-19 and self-reported health symptoms and exposure via Healthcheck that were analyzed across the state population but not connected at the individual patient level. ResultsRegression analysis showed that the self-reported information collected by Healthcheck significantly affects the number of COVID-19–confirmed cases. The results demonstrate that the average number of confirmed COVID-19 cases increased by 5 (high risk: β=5.10; P=.001), decreased by 24 (sore throat: β=−24.03; P=.001), and increased by 21 (nausea or vomiting: β=21.67; P=.02) per day for every additional self-report of symptoms by Healthcheck survey respondents. Congestion or runny nose was the most frequently reported symptom. Sore throat, low risk, high risk, nausea, or vomiting were all statistically significant factors. ConclusionsThe use of technology allowed organizations to remotely track a population as it is related to COVID-19. Healthcheck was a platform that aided in symptom tracking, risk assessment, and evaluation of status for admitting individuals into public spaces for people in the Alabama area. The confirmed relationship between symptom and exposure self-reporting using an app and population-wide confirmed cases suggests that further investigation is needed to determine the opportunity for such apps to mitigate disease spread at a community and individual level.