Polymers (Feb 2020)

Reduced Coefficients of Linear Thermal Expansion of Colorless and Transparent Semi-Alicyclic Polyimide Films via Incorporation of Rigid-Rod Amide Moiety: Preparation and Properties

  • Gang-lan Jiang,
  • Dong-yang Wang,
  • Hao-peng Du,
  • Xiao Wu,
  • Yan Zhang,
  • Yao-yao Tan,
  • Lin Wu,
  • Jin-gang Liu,
  • Xiu-min Zhang

DOI
https://doi.org/10.3390/polym12020413
Journal volume & issue
Vol. 12, no. 2
p. 413

Abstract

Read online

Semi-alicyclic colorless and transparent polyimide (CPI) films usually suffer from the high linear coefficients of thermal expansion (CTEs) due to the intrinsic thermo-sensitive alicyclic segments in the polymers. A series of semi-alicyclic CPI films containing rigid-rod amide moieties were successfully prepared in the current work in order to reduce the CTEs of the CPI films while maintaining their original optical transparency and solution-processability. For this purpose, two alicyclic dianhydrides, hydrogenated pyromellitic anhydride (HPMDA, I), and hydrogenated 3,3’,4,4’-biphenyltetracarboxylic dianhydride (HBPDA, II) were polymerized with two amide-bridged aromatic diamines, 2-methyl-4,4’-diaminobenzanilide (MeDABA, a) and 2-chloro-4,4’-diaminobenzanilide (ClDABA, b) respectively to afford four CPI resins. The derived CPI resins were all soluble in polar aprotic solvents, including N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). Flexible and tough CPI films were successfully prepared by casing the PI solutions onto glass substrates followed by thermally cured at elevated temperatures from 80 °C to 250 °C. The MeDABA derived PI-Ia (HPMDA-MeDABA) and PI-IIa (HBPDA-MeDABA) exhibited superior optical transparency compared to those derived from ClDABA (PI-Ib and PI-IIb). PI-Ia and PI-IIa showed the optical transmittances of 82.3% and 85.8% at the wavelength of 400 nm with a thickness around 25 μm, respectively. Introduction of rigid-rod amide moiety endowed the HPMDA-PI films good thermal stability at elevated temperatures with the CTE values of 33.4 × 10−6/K for PI-Ia and 27.7 × 10−6/K for PI-Ib in the temperature range of 50−250 °C. Comparatively, the HBPDA-PI films exhibited much higher CTE values. In addition, the HPMDA-PI films exhibited good thermal stability with the 5% weight loss temperatures (T5%) higher than 430 °C and glass transition temperatures (Tg) in the range of 349−351 °C.

Keywords