Structural Dynamics (Sep 2015)
Communication: X-ray coherent diffractive imaging by immersion in nanodroplets
- Rico Mayro P. Tanyag,
- Charles Bernando,
- Curtis F. Jones,
- Camila Bacellar,
- Ken R. Ferguson,
- Denis Anielski,
- Rebecca Boll,
- Sebastian Carron,
- James P. Cryan,
- Lars Englert,
- Sascha W. Epp,
- Benjamin Erk,
- Lutz Foucar,
- Luis F. Gomez,
- Robert Hartmann,
- Daniel M. Neumark,
- Daniel Rolles,
- Benedikt Rudek,
- Artem Rudenko,
- Katrin R. Siefermann,
- Joachim Ullrich,
- Fabian Weise,
- Christoph Bostedt,
- Oliver Gessner,
- Andrey F. Vilesov
Affiliations
- Rico Mayro P. Tanyag
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Charles Bernando
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
- Curtis F. Jones
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Camila Bacellar
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Ken R. Ferguson
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Denis Anielski
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Rebecca Boll
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Sebastian Carron
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- James P. Cryan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Lars Englert
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85741 Garching, Germany
- Sascha W. Epp
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Benjamin Erk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Lutz Foucar
- Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany
- Luis F. Gomez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Robert Hartmann
- PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany
- Daniel M. Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Daniel Rolles
- Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany
- Benedikt Rudek
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Artem Rudenko
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Katrin R. Siefermann
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Joachim Ullrich
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Fabian Weise
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Christoph Bostedt
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Andrey F. Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- DOI
- https://doi.org/10.1063/1.4933297
- Journal volume & issue
-
Vol. 2,
no. 5
pp. 051102 – 051102-9
Abstract
Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. Images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.