Molecules (Jul 2020)

Study on the Adsorption of CuFe<sub>2</sub>O<sub>4</sub>-Loaded Corncob Biochar for Pb(II)

  • Tianci Zhao,
  • Xiaolong Ma,
  • Hao Cai,
  • Zichuan Ma,
  • Huifeng Liang

DOI
https://doi.org/10.3390/molecules25153456
Journal volume & issue
Vol. 25, no. 15
p. 3456

Abstract

Read online

A series of the magnetic CuFe2O4-loaded corncob biochar (CuFe2O4@CCBC) materials was obtained by combining the two-step impregnation of the corncob biochar with the pyrolysis of oxalate. CuFe2O4@CCBC and the pristine corncob biochar (CCBC) were characterized using XRD, SEM, VSM, BET, as well as pHZPC measurements. The results revealed that CuFe2O4 had a face-centered cubic crystalline phase and was homogeneously coated on the surface of CCBC. The as-prepared CuFe2O4@CCBC(5%) demonstrated a specific surface area of 74.98 m2·g−1, saturation magnetization of 5.75 emu·g−1 and pHZPC of 7.0. The adsorption dynamics and thermodynamic behavior of Pb(II) on CuFe2O4@CCBC and CCBC were investigated. The findings indicated that the pseudo-second kinetic and Langmuir equations suitably fitted the Pb(II) adsorption by CuFe2O4@CCBC or CCBC. At 30 °C and pH = 5.0, CuFe2O4@CCBC(5%) displayed an excellent performance in terms of the process rate and adsorption capacity towards Pb(II), for which the theoretical rate constant (k2) and maximum adsorption capacity (qm) were 7.68 × 10−3 g·mg−1··min−1 and 132.10 mg·g−1 separately, which were obviously higher than those of CCBC (4.38 × 10−3 g·mg−1·min−1 and 15.66 mg·g−1). The thermodynamic analyses exhibited that the adsorption reaction of the materials was endothermic and entropy-driven. The XPS and FTIR results revealed that the removal mechanism could be mainly attributed to the replacement of Pb2+ for H+ in Fe/Cu–OH and –COOH to form the inner surface complexes. Overall, the magnetic CuFe2O4-loaded biochar presents a high potential for use as an eco-friendly adsorbent to eliminate the heavy metals from the wastewater streams.

Keywords