BMC Plant Biology (May 2019)

Genetic factors affecting Fusarium head blight resistance improvement from introgression of exotic Sumai 3 alleles (including Fhb1, Fhb2, and Fhb5) in hard red spring wheat

  • Gurcharn Singh Brar,
  • Anita L. Brûlé-Babel,
  • Yuefeng Ruan,
  • Maria Antonia Henriquez,
  • Curtis Jerry Pozniak,
  • Hadley Randal Kutcher,
  • Pierre Jan Hucl

DOI
https://doi.org/10.1186/s12870-019-1782-2
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Fusarium head blight resistance genes, Fhb1 (for Type-II resistance), Fhb2 (Type-II), and Fhb5 (Type-I plus some Type-II), which originate from Sumai 3, are among the most important that confer resistance in hexaploid wheat. Near-isogenic lines (NILs), in the CDC Alsask (susceptible; n = 32) and CDC Go (moderately susceptible; n = 38) backgrounds, carrying these genes in all possible combinations were developed using flanking microsatellite markers and evaluated for their response to FHB and deoxynivalenol (DON) accumulation in eight environments. NILs were haplotyped with wheat 90 K iSelect assay to elucidate the genomic composition and confirm alleles’ presence. Other than evaluating the effects of three major genes in common genetic background, the study elucidated the epistatic gene interactions as they influence FHB measurements; identified loci other than Fhb1, Fhb2, and Fhb5, in both recurrent and donor parents and examined annotated proteins in gene intervals. Results Genotyping using 81,857 single nucleotide polymorphism (SNP) markers revealed polymorphism on all chromosomes and that the NILs carried 20% of the phenotypic variation in FHB measurements. Conclusions Immediate Sumai 3 derivatives carry a number of resistance improving minor effect alleles, other than Fhb1, Fhb2, Fhb5. Results verified that marker-assisted selection is possible for the introgression of exotic FHB resistance genes, however, the genetic background of the recipient line and epistatic interactions can have a strong influence on expression and penetrance of any given gene.

Keywords