Remote Sensing (Nov 2018)

Developing an Ensemble Precipitation Algorithm from Satellite Products and Its Topographical and Seasonal Evaluations Over Pakistan

  • Khalil Ur Rahman,
  • Songhao Shang,
  • Muhammad Shahid,
  • Jiang Li

DOI
https://doi.org/10.3390/rs10111835
Journal volume & issue
Vol. 10, no. 11
p. 1835

Abstract

Read online

Accurate estimation of precipitation is critical for hydrological, meteorological, and climate models. This study evaluates the performance of satellite-based precipitation products (SPPs) including Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG), Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA 3B43-v7), Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN), and PERSIANN-CDR (Climate Data Record), over Pakistan based on Surface Precipitation Gauges (SPGs) at spatial and temporal scales. A novel ensemble precipitation (EP) algorithm is developed by selecting the two best SPPs using the Paired Sample t-test and Principal Component Analysis (PCA). The SPPs and EP algorithm are evaluated over five climate zones (ranging from glacial Zone-A to hyper-arid Zone-E) based on six statistical metrics. The result indicated that IMERG outperformed all other SPPs, but still has considerable overestimation in the highly elevated zones (+20.93 mm/month in Zone-A) and relatively small underestimation in the arid zone (−2.85 mm/month in Zone-E). Based on the seasonal evaluation, IMERG and TMPA overestimated precipitation during pre-monsoon and monsoon seasons while underestimating precipitation during the post-monsoon and winter seasons. However, the developed EP algorithm significantly reduced the errors both on spatial and temporal scales. The only limitation of the EP algorithm is relatively poor performance at high elevation as compared to low elevations.

Keywords