Applied Computational Intelligence and Soft Computing (Jan 2017)
The Prefiltering Techniques in Emotion Based Place Recommendation Derived by User Reviews
Abstract
Context-aware recommendation systems attempt to address the challenge of identifying products or items that have the greatest chance of meeting user requirements by adapting to current contextual information. Many such systems have been developed in domains such as movies, books, and music, and emotion is a contextual parameter that has already been used in those fields. This paper focuses on the use of emotion as a contextual parameter in a tourist destination recommendation system. We developed a new corpus that incorporates the emotion parameter by employing semantic analysis techniques for destination recommendation. We review the effectiveness of incorporating emotion in a recommendation process using prefiltering techniques and show that the use of emotion as a contextual parameter for location recommendation in conjunction with collaborative filtering increases user satisfaction.