Neurology and Therapy (Oct 2023)

Immunotherapies Targeting Amyloid and Tau Protein in Alzheimer’s Disease: Should We Move Away from Diseases and Focus on Biological Targets? A Systematic Review and Expert Opinion

  • Arthur Esquer,
  • Frédéric Blanc,
  • Nicolas Collongues

DOI
https://doi.org/10.1007/s40120-023-00541-1
Journal volume & issue
Vol. 12, no. 6
pp. 1883 – 1907

Abstract

Read online

Abstract Introduction Alzheimer’s disease (AD) is the most common cause of dementia worldwide, making it a major public health issue. Anti-amyloid and anti-tau antibodies are the most advanced therapeutic approach at present. Three drugs (lecanemab, donanemab and aducanumab) are on track to be marketed in the coming months. In this systematic review, we review all Phase 2 and Phase 3 clinical trials conducted in this indication and the particularities of the molecules tested. Methods The PubMed and ClinicalTrials.gov databases were searched through February 2023 for Phase 2 and 3 clinical trials involving passive anti-amyloid or anti-tau immunotherapies with published results. This review has been compiled in compliance with the PRISMA checklists. Results Of the 165 studies found and after eliminating duplicates, 40 studies had their results published on PubMed and/or ClinicalTrials.gov. Eight anti-amyloid molecules and four anti-tau molecules were the subject of Phase 2 studies, seven anti-amyloids were the subject of Phase 3 trials, and two molecules were granted early marketing approval by the US Food and Drug Administration (FDA). The results were compiled in summary tables showing the primary endpoints used, results, age of the study population and specific adverse events for these molecules. Discussion Passive immunotherapy in AD is largely dominated by anti-amyloid antibodies, which are more numerous and more advanced in the pipeline. Lecanemab, donanemab and aducanumab are distinguished by their relative efficacy in terms of cognitive and functional evaluation but also by a decrease in amyloid and tau proteins in the brain. These three molecules have in common that they bind to N-terminal ends of amyloid fibrils and plaques. The findings of their studies raise the question of which criteria to apply when choosing which patient will receive them when marketed, such as the apoliprotein E gene’s fourth allele (APOE4) genetic status of patients. The large number of negative studies may also raise the question of the criteria for defining the disease and the possible interest in redefining it on biological grounds to offer a more personalized medicine to patients suffering from neurodegenerative diseases.

Keywords