PLoS ONE (Jan 2013)

Sox-2 Positive Neural Progenitors in the Primate Striatum Undergo Dynamic Changes after Dopamine Denervation.

  • Cristina Ordoñez,
  • Paz Moreno-Murciano,
  • Maria Hernandez,
  • Carla Di Caudo,
  • Iñaki-Carril Mundiñano,
  • Iñaki Carril-Mundiñano,
  • Nerea Vazquez,
  • Jose Manuel Garcia-Verdugo,
  • Rosario Sanchez-Pernaute,
  • Maria-Rosario Luquin

DOI
https://doi.org/10.1371/journal.pone.0066377
Journal volume & issue
Vol. 8, no. 6
p. e66377

Abstract

Read online

The existence of endogenous neural progenitors in the nigrostriatal system could represent a powerful tool for restorative therapies in Parkinson's disease. Sox-2 is a transcription factor expressed in pluripotent and adult stem cells, including neural progenitors. In the adult brain Sox-2 is expressed in the neurogenic niches. There is also widespread expression of Sox-2 in other brain regions, although the neurogenic potential outside the niches is uncertain. Here, we analyzed the presence of Sox-2(+) cells in the adult primate (Macaca fascicularis) brain in naïve animals (N = 3) and in animals exposed to systemic administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine to render them parkinsonian (N = 8). Animals received bromodeoxyuridine (100 mg/kg once a day during five consecutive days) to label proliferating cells and their progeny. Using confocal and electron microscopy we analyzed the Sox-2(+) cell population in the nigrostriatal system and investigated changes in the number, proliferation and neurogenic potential of Sox-2(+) cells, in control conditions and at two time points after MPTP administration. We found Sox-2(+) cells with self-renewal capacity in both the striatum and the substantia nigra. Importantly, only in the striatum Sox-2(+) was expressed in some calretinin(+) neurons. MPTP administration led to an increase in the proliferation of striatal Sox-2(+) cells and to an acute, concomitant decrease in the percentage of Sox-2(+)/calretinin(+) neurons, which recovered by 18 months. Given their potential capacity to differentiate into neurons and their responsiveness to dopamine neurotoxic insults, striatal Sox-2(+) cells represent good candidates to harness endogenous repair mechanisms for regenerative approaches in Parkinson's disease.