Symmetry (Oct 2023)

Uniqueness Results and Asymptotic Behaviour of Nonlinear Schrödinger–Kirchhoff Equations

  • Dongdong Sun

DOI
https://doi.org/10.3390/sym15101856
Journal volume & issue
Vol. 15, no. 10
p. 1856

Abstract

Read online

In this paper, we first study the uniqueness and symmetry of solution of nonlinear Schrödinger–Kirchhoff equations with constant coefficients. Then, we show the uniqueness of the solution of nonlinear Schrödinger–Kirchhoff equations with the polynomial potential. In the end, we investigate the asymptotic behaviour of the positive least energy solutions to nonlinear Schrödinger–Kirchhoff equations with vanishing potentials. The vanishing potential means that the zero set of the potential is non-empty. The uniqueness results of Schrödinger equations and the scaling technique are used in our proof. The elliptic estimates and energy analysis are applied in the proof of the asymptotic behaviour of the above Schrödinger–Kirchhoff-type equations.

Keywords