The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Jun 2021)

GEOMORPHOLOGICAL MAPPING OF INTERTIDAL AREAS

  • M. Lu,
  • L. Groeneveld,
  • D. Karssenberg,
  • S. Ji,
  • R. Jentink,
  • E. Paree,
  • E. Addink

DOI
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-75-2021
Journal volume & issue
Vol. XLIII-B3-2021
pp. 75 – 80

Abstract

Read online

Spatiotemporal geomorphological mapping of intertidal areas is essential for understanding system dynamics and provides information for ecological conservation and management. Mapping the geomorphology of intertidal areas is very challenging mainly because spectral differences are oftentimes relatively small while transitions between geomorphological units are oftentimes gradual. Also, the intertidal areas are highly dynamic. Considerable challenges are to distinguish between different types of tidal flats, specifically, low and high dynamic shoal flats, sandy and silty low dynamic flats, and mega-ripple areas. In this study, we harness machine learning methods and compare between machine learning methods using features calculated in classical Object-Based Image Analysis (OBIA) vs. end-to-end deep convolutional neural networks that derive features directly from imagery, in automated geomorphological mapping. This study expects to gain us an in-depth understanding of features that contribute to tidal area classification and greatly improve the automation and prediction accuracy. We emphasise model interpretability and knowledge mining. By comparing and combing object-based and deep learning-based models, this study contributes to the development and integration of both methodology domains for semantic segmentation.