Antioxidants (Nov 2022)
Physical and Oxidative Water-in-Oil Emulsion Stability by the Addition of Liposomes from Shrimp Waste Oil with Antioxidant and Anti-Inflammatory Properties
Abstract
Liposomes made of partially purified phospholipids (PL) from Argentine red shrimp waste oil were loaded with two antioxidant lipid co-extracts (hexane-soluble, Hx and acetone-soluble, Ac) to provide a higher content of omega-3 fatty acids. The physical properties of the liposomes were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The antioxidant and anti-inflammatory activity of the lipid extracts and liposomal suspensions were evaluated in terms of Superoxide and ABTS radical scavenging capacities and TNF-α inhibition. Uni-lamellar spherical liposomes (z-average ≈ 145 nm) with strong negative ζ potential (≈ −67 mV) were obtained in all cases. The high content of neutral lipids in the Hx extract caused structural changes in the bilayer membrane and decreased entrapment efficiency regarding astaxanthin and EPA + DHA contents. The liposomes loaded with the Hx/Ac extracts showed higher antioxidant and anti-inflammatory activity compared with empty liposomes. The liposomal dispersions improved the physical and oxidative stability of water-in-oil emulsions as compared with the PL extract, inducing pronounced close packing of water droplets. The liposomes decreased hydroperoxide formation in freshly made emulsions and prevented thio-barbituric acid-reactive substances (TBARS) accumulation during chilled storage. Liposomes from shrimp waste could be valuable nanocarriers and stabilizers in functional food emulsions.
Keywords