Journal of Clinical and Translational Science (Apr 2024)

47 Cross-ancestry GWAS meta-analysis of keloids discovers novel susceptibility loci in diverse populations

  • Catherine Anne Greene,
  • Gabrielle Hampton,
  • Gail P. Jarvik,
  • Bahram Namjou-Khales,
  • Atlas Khan,
  • Yuan Luo,
  • Todd L. Edwards,
  • Digna R. Velez Edwards,
  • Jacklyn N. Hellwege

DOI
https://doi.org/10.1017/cts.2024.58
Journal volume & issue
Vol. 8
pp. 13 – 13

Abstract

Read online

OBJECTIVES/GOALS: We aimed to conduct an updated genome-wide meta-analysis of keloids in expanded populations, including those most afflicted by keloids. Our overall objective was to improve understanding of keloid development though the identification and further characterization of keloid-associated genes with genetically predicted gene expression (GPGE). METHODS/STUDY POPULATION: We used publicly available summary statistics from several large-scale DNA biobanks, including the UK Biobank, FinnGen, and Biobank Japan. We also leveraged data from the Million Veterans Program and performed genome-wide association studies of keloids in BioVU and eMERGE. For each of these datasets, cases were determined from ICD-9/ICD-10 codes and phecodes. With these data we conducted fixed effects meta-analysis, both across ancestries and stratified by broad ancestry groups. This approach allowed us to consider cumulative evidence for genetic risk factors for keloids and explore potential ancestry-specific components of risk. We used FUMA for functional annotation of results and LDSC to estimate ancestry-specific heritability. We performed GPGE analysis using S-PrediXcan with GTEx v8 tissues. RESULTS/ANTICIPATED RESULTS: We detected 30 (23 novel) genomic risk loci in the cross-ancestry analysis. Major risk loci were broadly consistent between ancestries, with variable effects. Keloid heritability estimates from LDSC were 6%, 21%, and 34% for European, East Asian, and African ancestry, respectively. The top hit (P = 1.7e-77) in the cross-ancestry analysis was at a replicated variant (rs10863683) located downstream of LINC01705. GPGE analysis identified an association between decreased risk of keloids and increased expression of LINC01705 in fibroblasts (P = 3.6e10-20), which are important in wound healing. The top hit in the African-ancestry analysis (P = 5.5e-31) was a novel variant (rs34647667) in a conserved region downstream of ITGA11. ITGA11 encodes a collagen receptor and was previously associated with uterine fibroids. DISCUSSION/SIGNIFICANCE: This work significantly increases the yield of discoveries from keloid genetic association studies, describing both common and ancestry-specific effects. Stark differences in heritability support a potential adaptive origin for keloid disparities. Further work will continue to examine keloids in the broader context of other fibrotic diseases.