Green Energy & Environment (Dec 2023)

Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions

  • Muhammad Ibrar Ahmed,
  • David Brynn Hibbert,
  • Chuan Zhao

Journal volume & issue
Vol. 8, no. 6
pp. 1567 – 1595

Abstract

Read online

Ammonia (NH3), a carbon-free hydrogen carrier, is an important commodity for the food supply chain owing to its high energy capacity and ease of storage and transport. The Haber–Bosch process is currently the favored industrial method for large-scale ammonia production but requires energy-intensive and sophisticated infrastructure which hampers its utilization in a sustainable and decentralized system of manufacture. The electrochemical nitrogen reduction reaction (eNRR) at ambient conditions holds great potential for sustainable production of ammonia using electricity generated from renewable energy sources such as solar and wind. However, this approach is limited by a low rate of ammonia production with high overpotential and the competing hydrogen evolution reaction (HER). For a better understanding and utilization of eNRR as a sustainable process, insight into rational catalyst design and mechanistic evaluations by a theoretically-directed experimental approach is imperative. Herein, recent insights into rational catalyst design and mechanisms, based on intrinsic and extrinsic catalytic activity are articulated. Following the elucidation of basic principles and mechanisms, a framework supplied by theoretical studies that lead to the optimal selection and development of eNRR catalysts is presented. Following a discussion of recently developed electrocatalysts for eNRR, we outline various recently-used theoretical and experimental methodologies to improve the intrinsic and extrinsic catalytic activity of advanced electrocatalysts. This review is anticipated to contribute to the development of active, selective, and efficient catalysts for nitrogen reduction.

Keywords