Journal of Immunology Research (Jan 2023)
Broadly Reactive SARS-CoV-2-Specific T-Cell Response and Participation of Memory B and T Cells in Patients with Omicron COVID-19 Infection
Abstract
January 2022 onward, India witnessed a sudden increase in Omicron COVID-19 infections, having a mild course that prompted us to identify the key host factors/immune molecules modulating disease course/outcomes. The current study evaluated the percentages of lymphocyte subsets by flowcytometry, SARS-CoV-2 specific T-cell immune response by ELISPOT, estimation of plasma cytokine/chemokine levels on a Bio-plex Multiplex Immunoassay System and anti-SARS-CoV-2 IgG levels by enzyme-linked immunosorbent assay in 19 mild Omicron infected patients, 45 mild SARS-CoV-2 (2020) patients and 36 uninfected controls from India. Natural killer cells, B and memory B cells were high in vaccinated and total Omicron-infected patients groups compared to the mild SARS-CoV-2 (2020) patient group, while CD8+ T cells were high in total Omicron-infected patients group compared to the uninfected control group (p<0.05 each). Omicron-infected patients had T-cell response against SARS-CoV-2 whole virus, S1 proteins (wild type and delta variant) in 10 out of 17 (59%), 10 out of 17 (59%), and 8 out of 17 (47%), respectively. The current study of Omicron-infected patients elucidates broadly reactive antibody, T-cell response, and participation of memory B and T cells induced by vaccination/natural infection. The limited effect of Omicron’s mutations on T-cell response is suggestive of protection from severity. Pro-inflammatory IL-6, IFN-γ, chemokines CCL-2, CCL-3, CCL-4, CCL-5, and IL-8 as potential biomarkers of Omicron infection may have future diagnostic importance. The cellular immune response data in Omicron-infected patients with parental Omicron lineage could serve as a starting point to define the readouts of protective immunity against circulating Omicron subvariants.