Asian Pacific Journal of Tropical Biomedicine (Jan 2019)

Antioxidant, anti-quorum sensing and anti-biofilm potential of ethanolic leaf extract of Phrynium capitatum and Dryptes indica

  • Nagaraju Jalli,
  • K V Santhi Sri,
  • Sairengpuii Hnamte,
  • Subhaswaraj Pattnaik,
  • Parasuraman Paramanantham,
  • Busi Siddhardha

DOI
https://doi.org/10.4103/2221-1691.262082
Journal volume & issue
Vol. 9, no. 8
pp. 323 – 332

Abstract

Read online

Objective: To investigate the antioxidant and anti-infective potential of Phrynium capitatum and Dryptes indica extract. Methods: The antioxidant potentials were determined by DPPH radical scavenging, reducing power, hydroxyl radical scavenging and total antioxidant assays. We further examined anti-quorum sensing activity and inhibition of synthesis of pathogenic factor of Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Bioactive compounds were determined using gas chromatography–mass spectrometry analysis. In silico analysis was conducted to determine the binding affinity of bioactive compounds of plant extracts for the quorum sensing regulatory receptor LasR. Results: DPPH assay showed that the ethanolic extract of Phrynium capitatum and Dryptes indica at 500 μg/mL showed (86.96 ± 4.07)% and (74.83 ± 3.47)% inhibition, respectively. Hydroxyl radical scavenging assay showed (73.17 ± 3.03)% and (62.63 ± 4.59)% activity, respectively. The ethanolic extract of Phrynium capitatum and Dryptes indica showed high level of attenuation of quorum sensing regulated pyocyanin production. Confocal laser scanning microscopic analysis revealed that the extracts had the potential to effectively inhibit biofilm formation of Pseudomonas aeruginosa. Molecular docking analysis showed a better binding affinity of bioactive compounds from the extracts for the structure of LasR protein of Pseudomonas aeruginosa. Conclusions: The ethanolic extracts of Phrynium capitatum and Dryptes indica possess antioxidant activity and the potential to inhibit the quorum sensing system and its regulatory irulence traits in Pseudomonas aeruginosa PAO1.

Keywords