Inorganics (Jul 2024)

Electrochemically Active Copper Complexes with Pyridine-Alkoxide Ligands

  • Christopher K. Webber,
  • Erica K. Richardson,
  • Diane A. Dickie,
  • T. Brent Gunnoe

DOI
https://doi.org/10.3390/inorganics12080200
Journal volume & issue
Vol. 12, no. 8
p. 200

Abstract

Read online

Pyridine-alkoxide (pyalk) ligands that support transition metals have been studied for their use in electrocatalytic applications. Herein, we used the pyalk proligands diphenyl(pyridin-2-yl)methanol ([H]PhPyalk, L1), 1-(pyren-1-yl)-1-(pyridin-2-yl)ethan-1-ol ([H]PyrPyalk, L2), 1-(pyridine-2-yl)-1-(thiophen-2-yl)ethan-1-ol ([H]ThioPyalk, L3), and 1-(ferrocenyl)-1-(pyridin-2-yl)ethan-1-ol ([H]FePyalk, L4) to synthesize CuII complexes that vary in nuclearity and secondary coordination sphere. Also, the proligand 1-(ferrocenyl)-1-(5-methoxy-pyridin-2-yl)ethan-1-ol ([H]FeOMePyalk, L5) was synthesized with a methoxy substituted pyridine; however, the isolation of a CuII complex ligated by L5 was not possible. Under variable reaction conditions, the pyalk ligands reacted with CuII precursors and formed either mononuclear or dinuclear CuII complexes depending on the amount of ligand added. The resulting complexes were characterized by single crystal X-ray diffraction, elemental analysis, and cyclic voltammetry.

Keywords