Results in Engineering (Sep 2024)
In-situ synthesis of SnO/CuSnO3 nanostructures to catalyze azo dye degradation, CO2 reduction, and amines direct alkylation reactions under visible light
Abstract
The extensive use of photocatalysis to address environmental concerns, energy production, and organic transformations has attracted attention in recent decades. The SnO/CSO photocatalytic materials were fabricated through a single-step hydrothermal method and comprehensively characterized using a muti-technique approach to demonstrate the physicochemical, morphological, and electronic features. According to the photocatalytic experiments, the SnO/CSO could remove >96 % of acid blue 92 (AB92) azo dye under optimum conditions, with rate constant 2.37 × 10−2 min−1. Furthermore, the photocatalyst significantly outperformed commercial TiO2 (P25), in reducing CO2 to CO and CH4 with a production rate of 10.8 and 1.18 μmol g−1 h−1, respectively, under visible light irradiation. The successful direct alkylation of amines to valuable organic compounds within 10 min of the reaction time with a conversion selectivity of >90 % was another capability of the materials, making it a good candidate for pharmaceutical synthesis purposes.