The effect of low cycle fatigue (LCF) predamage on the subsequent very high cycle fatigue (VHCF) behavior is investigated in TC21 titanium alloy. LCF predamage is applied under 1.8% strain amplitude up to various fractions of the expected life and subsequent VHCF properties are determined using ultrasonic fatigue tests. Results show that 5% of predamage insignificantly affects the VHCF limit due to the absence of precrack, but decreases the subsequent fatigue crack initiation life estimated by the Pairs law. Precracks introduced by 10% and 20% of predamage significantly reduce the subsequent VHCF limits. The crack initiation site shifts from subsurface-induced fracture for undamaged and 5% predamaged specimens to surface precrack for 10% and 20% predamaged specimens in very high cycle region. Furthermore, the predicted fatigue limits based on the El Haddad modified model for the predamaged specimens agree with the experimental results.