Heliyon (Jul 2024)

A cuproptosis-related lncRNAs signature predicts prognosis and reveals pivotal interactions between immune cells in colon cancer

  • Jingru Song,
  • Dong Xie,
  • Xia Wei,
  • Binbin Liu,
  • Fang Yao,
  • Wei Ye

Journal volume & issue
Vol. 10, no. 14
p. e34586

Abstract

Read online

Copper-mediated cell death presents distinct pathways from established apoptosis processes, suggesting alternative therapeutic approaches for colon cancer. Our research aims to develop a predictive framework utilizing long-noncoding RNAs (lncRNAs) related to cuproptosis to predict colon cancer outcomes while examining immune interactions and intercellular signaling. We obtained colon cancer-related human mRNA expression profiles and clinical information from the Cancer Genome Atlas repository. To isolate lncRNAs involved in cuproptosis, we applied Cox proportional hazards modeling alongside the least absolute shrinkage and selection operator technique. We elucidated the underlying mechanisms by examining the tumor mutational burden, the extent of immune cell penetration, and intercellular communication dynamics. Based on the model, drugs were predicted and validated with cytological experiments. A 13 lncRNA–cuproptosis-associated risk model was constructed. Two colon cancer cell lines were used to validate the predicted representative mRNAs with high correlation coefficients with copper-induced cell death. Survival enhancement in the low-risk cohort was evidenced by the trends in Kaplan–Meier survival estimates. Analysis of immune cell infiltration suggested that survival was induced by the increased infiltration of naïve CD4+ T cells and a reduction of M2 macrophages within the low-risk faction. Decreased infiltration of naïve B cells, resting NK cells, and M0 macrophages was significantly associated with better overall survival. Combined single-cell analysis suggested that CCL5–ACKR1, CCL2–ACKR1, and CCL5–CCR1 pathways play key roles in mediating intercellular dialogues among immune constituents within the neoplastic microhabitat. We identified three drugs with a high sensitivity in the high-risk group. In summary, this discovery establishes the possibility of using 13 cuproptosis-associated lncRNAs as a risk model to assess the prognosis, unravel the immune mechanisms and cell communication, and improve treatment options, which may provide a new idea for treating colon cancer.

Keywords