PLoS ONE (Jan 2014)
Unexpected DNA loss mediated by the DNA binding activity of ribonuclease A.
Abstract
Ribonuclease A (RNase A) is widely used in molecular biology research both for analytical assays and for nucleic acid preparation. The catalytic mechanism of RNase A is well understood and absolutely precludes activity on DNA; however anecdotal reports of DNA degradation by RNase A are not uncommon. Here we describe a mechanism by which RNase A treatment can lead to apparent DNA degradation. This results from the surprising finding that RNase A remains functional in a phenol:chloroform mixture, to our knowledge the only enzyme that survives this highly denaturing solvent environment. Although RNase A does not cleave the DNA backbone it is capable of binding to DNA, forming stable RNase A-DNA complexes that partition to the interphase or organic phase during phenol:chloroform purification. The unexpected survival of the RNase A DNA-binding activity in phenol means that these complexes are not dissolved and a substantial amount of RNase A-bound DNA is permanently removed from the aqueous phase and lost on phase separation. This effect will impact DNA recovery from multiple procedures and is likely to represent a source of sequence bias in genome-wide studies. Our results also indicate that the results of analytical studies performed using RNase A must be considered with care.