The presence of a distribution of transition temperatures (DTT) is ubiquitous in materials science. It is common to ascribe deviations from theoretical pure-phase behavior to this fact. To adapt the different pure phase models to systems with a DTT, the parameters of such distribution must be known or at least estimated. In this review, the different sources for the existence of such distributions and their effects on magnetothermal properties are summarized. In addition, different models proposed to extract the parameters of the corresponding DTT are discussed and extended, starting from Weiss model, to account for other phenomenologies. Experimental results on amorphous Fe-Nb-B and intermetallic MnCo(Fe)Ge systems are also reported.