Nanochemistry Research (Dec 2018)

Fe3O4 magnetic nanoparticles (MNPs) as an effective catalyst for synthesis of indole derivatives

  • Zohreh Rostami,
  • Masoumeh Rouhanizadeh,
  • Navabeh Nami,
  • Daryoush Zareyee

DOI
https://doi.org/10.22036/ncr.2018.02.003
Journal volume & issue
Vol. 3, no. 2
pp. 142 – 148

Abstract

Read online

The principal aim of this research is the application of Fe3O4 (MNPs) in the synthesis of some indole derivatives. Fe3O4 MNPs were prepared by Co-Precipitation method from the reaction of FeCl2.4H2O and FeCl3.6H2O in ammonia solution. Morphology and structure of Fe3O4 MNPs were determined by FT-IR, X-Ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Fe3O4 (MNPs) has been used as a highly efficient catalyst for the synthesis of some Indole derivatives like 6H-Indole [2,3-b] quinoxaline, 3-methyl–6H-Indole [2,3-b] quinoxaline and (z)-3-(pyridine-2-yl-imino)-Indole-2-one. The reaction was carried out using various amounts of Fe3O4 nanoparticles in various solvents and solvent-free conditions. The optimum amount of nano-Fe3O4 was 5 mol% in THF under reflux conditions. The structures of indole derivatives were further established by NMR, and FT-IR spectra. In view of excellent catalytic capacity, the exceedingly simple workup procedure, environmentally friendly reaction and good yield, Fe3O4 (MNPs) was proved to be the good catalyst for this reaction.

Keywords